Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.908
1.
Respir Res ; 25(1): 202, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730452

BACKGROUND: Extracellular mitochondrial DNA (mtDNA) is released from damaged cells and increases in the serum and bronchoalveolar lavage fluid (BALF) of idiopathic pulmonary fibrosis (IPF) patients. While increased levels of serum mtDNA have been reported to be linked to disease progression and the future development of acute exacerbation (AE) of IPF (AE-IPF), the clinical significance of mtDNA in BALF (BALF-mtDNA) remains unclear. We investigated the relationships between BALF-mtDNA levels and other clinical variables and prognosis in IPF. METHODS: Extracellular mtDNA levels in BALF samples collected from IPF patients were determined using droplet-digital PCR. Levels of extracellular nucleolar DNA in BALF (BALF-nucDNA) were also determined as a marker for simple cell collapse. Patient characteristics and survival information were retrospectively reviewed. RESULTS: mtDNA levels in serum and BALF did not correlate with each other. In 27 patients with paired BALF samples obtained in a stable state and at the time of AE diagnosis, BALF-mtDNA levels were significantly increased at the time of AE. Elevated BALF-mtDNA levels were associated with inflammation or disordered pulmonary function in a stable state (n = 90), while being associated with age and BALF-neutrophils at the time of AE (n = 38). BALF-mtDNA ≥ 4234.3 copies/µL in a stable state (median survival time (MST): 42.4 vs. 79.6 months, p < 0.001) and ≥ 11,194.3 copies/µL at the time of AE (MST: 2.6 vs. 20.0 months, p = 0.03) were associated with shorter survival after BALF collection, even after adjusting for other known prognostic factors. On the other hand, BALF-nucDNA showed different trends in correlation with other clinical variables and did not show any significant association with survival time. CONCLUSIONS: Elevated BALF-mtDNA was associated with a poor prognosis in both IPF and AE-IPF. Of note, at the time of AE, it sharply distinguished survivors from non-survivors. Given the trends shown by analyses for BALF-nucDNA, the elevation of BALF-mtDNA might not simply reflect the impact of cell collapse. Further studies are required to explore the underlying mechanisms and clinical applications of BALF-mtDNA in IPF.


Bronchoalveolar Lavage Fluid , DNA, Mitochondrial , Idiopathic Pulmonary Fibrosis , Humans , Bronchoalveolar Lavage Fluid/chemistry , Idiopathic Pulmonary Fibrosis/diagnosis , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/mortality , Male , Female , DNA, Mitochondrial/genetics , DNA, Mitochondrial/analysis , Aged , Prognosis , Middle Aged , Retrospective Studies , Cohort Studies , Aged, 80 and over
2.
Transpl Int ; 37: 12298, 2024.
Article En | MEDLINE | ID: mdl-38741700

Primary graft dysfunction (PGD) remains a challenge for lung transplantation (LTx) recipients as a leading cause of poor early outcomes. New methods are needed for more detailed monitoring and understanding of the pathophysiology of PGD. The measurement of particle flow rate (PFR) in exhaled breath is a novel tool to monitor and understand the disease at the proteomic level. In total, 22 recipient pigs underwent orthotopic left LTx and were evaluated for PGD on postoperative day 3. Exhaled breath particles (EBPs) were evaluated by mass spectrometry and the proteome was compared to tissue biopsies and bronchoalveolar lavage fluid (BALF). Findings were confirmed in EBPs from 11 human transplant recipients. Recipients with PGD had significantly higher PFR [686.4 (449.7-8,824.0) particles per minute (ppm)] compared to recipients without PGD [116.6 (79.7-307.4) ppm, p = 0.0005]. Porcine and human EBP proteins recapitulated proteins found in the BAL, demonstrating its utility instead of more invasive techniques. Furthermore, adherens and tight junction proteins were underexpressed in PGD tissue. Histological and proteomic analysis found significant changes to the alveolar-capillary barrier explaining the high PFR in PGD. Exhaled breath measurement is proposed as a rapid and non-invasive bedside measurement of PGD.


Breath Tests , Bronchoalveolar Lavage Fluid , Lung Transplantation , Primary Graft Dysfunction , Proteomics , Animals , Lung Transplantation/adverse effects , Proteomics/methods , Primary Graft Dysfunction/metabolism , Primary Graft Dysfunction/etiology , Swine , Humans , Breath Tests/methods , Bronchoalveolar Lavage Fluid/chemistry , Female , Male , Exhalation
3.
J Intensive Care Med ; 39(6): 525-533, 2024 Jun.
Article En | MEDLINE | ID: mdl-38629466

RATIONALE: Recent studies suggest that both hypo- and hyperinflammatory acute respiratory distress syndrome (ARDS) phenotypes characterize severe COVID-19-related pneumonia. The role of lung Severe Acute Respiratory Syndrome - Coronavirus 2 (SARS-CoV-2) viral load in contributing to these phenotypes remains unknown. OBJECTIVES: To redefine COVID-19 ARDS phenotypes when considering quantitative SARS-CoV-2 RT-PCR in the bronchoalveolar lavage of intubated patients. To compare the relevance of deep respiratory samples versus plasma in linking the immune response and the quantitative viral loads. METHODS: Eligible subjects were adults diagnosed with COVID-19 ARDS who required mechanical ventilation and underwent bronchoscopy. We recorded the immune response in the bronchoalveolar lavage and plasma and the quantitative SARS-CoV-2 RT-PCR in the bronchoalveolar lavage. Hierarchical clustering on principal components was applied separately on the 2 compartments' datasets. Baseline characteristics were compared between clusters. MEASUREMENTS AND RESULTS: Twenty subjects were enrolled between August 2020 and March 2021. Subjects underwent bronchoscopy on average 3.6 days after intubation. All subjects were treated with dexamethasone prior to bronchoscopy, 11 of 20 (55.6%) received remdesivir and 1 of 20 (5%) received tocilizumab. Adding viral load information to the classic 2-cluster model of ARDS revealed a new cluster characterized by hypoinflammatory responses and high viral load in 23.1% of the cohort. Hyperinflammatory ARDS was noted in 15.4% of subjects. Bronchoalveolar lavage clusters were more stable compared to plasma. CONCLUSIONS: We identified a unique group of critically ill subjects with COVID-19 ARDS who exhibit hypoinflammatory responses but high viral loads in the lower airways. These clusters may warrant different treatment approaches to improve clinical outcomes.


Bronchoalveolar Lavage Fluid , COVID-19 , Critical Illness , Cytokines , SARS-CoV-2 , Viral Load , Humans , COVID-19/immunology , COVID-19/diagnosis , Male , Female , Middle Aged , Bronchoalveolar Lavage Fluid/virology , Bronchoalveolar Lavage Fluid/chemistry , Cytokines/analysis , Cytokines/blood , Aged , Phenotype , Respiration, Artificial , Respiratory Distress Syndrome/virology , Bronchoscopy , Adult , COVID-19 Nucleic Acid Testing , Antibodies, Monoclonal, Humanized
4.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 29-39, 2024 Mar 31.
Article En | MEDLINE | ID: mdl-38650159

Asthma is a chronic inflammatory disease of the airways strongly associated with interleukin-4 (IL-4), a cytokine that mediates and regulates various immune responses, including allergic reactions. This study aimed to evaluate the anti-inflammatory and antioxidant effects of an Aqueous Extract of Clove (AEC) Syzygium aromaticum on the lungs and erythrocytes of an experimental asthma model in Wistar rats. For this purpose, four groups of male rats were examined: control, sensitized with ovalbumin (OVA), treated with AEC, and treated with a combination of OVA/AEC. After treatment, the antioxidant effect was determined by measuring the malondialdehyde (MDA), glutathione peroxidase (GPx), glutathione (GSH), and catalase (CAT) levels. The anti-inflammatory effect was determined by measuring IL-4 levels by performing enzyme-linked immunosorbent assay (ELISA) using serum, lung, and bronchoalveolar lavage fluid (BALF) samples. A significant reduction (p ≤ 0.05) in the MDA levels and a significant increase (p ≤ 0.05) in the levels of GPx and CAT were observed in the lungs of rats treated with cloves. However, no statistically significant variation was observed in GSH levels. In erythrocytes, no statistically significant differences were observed between the experimental batches. Regarding the anti-inflammatory effect, the administration of S. aromaticum extract to sensitized rats resulted in a recovery in the levels of total proteins and IL-4 and a decrease in the three compartments studied (lungs, serum, and bronchoalveolar liquid). These results were confirmed by microscopic examination of lung histological sections. Overall, these findings confirmed that the AEC has anti-inflammatory and antioxidant effects.


Anti-Inflammatory Agents , Antioxidants , Asthma , Bronchoalveolar Lavage Fluid , Disease Models, Animal , Glutathione Peroxidase , Glutathione , Interleukin-4 , Lung , Malondialdehyde , Plant Extracts , Rats, Wistar , Syzygium , Animals , Antioxidants/pharmacology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Syzygium/chemistry , Male , Asthma/drug therapy , Asthma/chemically induced , Asthma/metabolism , Asthma/pathology , Bronchoalveolar Lavage Fluid/chemistry , Lung/drug effects , Lung/pathology , Lung/metabolism , Glutathione Peroxidase/metabolism , Glutathione/metabolism , Interleukin-4/metabolism , Interleukin-4/blood , Malondialdehyde/metabolism , Ovalbumin , Catalase/metabolism , Rats , Erythrocytes/drug effects , Erythrocytes/metabolism , Water/chemistry
5.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article En | MEDLINE | ID: mdl-38673881

Interstitial lung diseases (ILDs) are characterized by inflammation or fibrosis of the pulmonary parenchyma. Despite the involvement of immune cells and soluble mediators in pulmonary fibrosis, the influence of antimicrobial peptides (AMPs) remains underexplored. These effector molecules display a range of activities, which include immunomodulation and wound repair. Here, we investigate the role of AMPs in the development of fibrosis in ILD. We compare the concentration of different AMPs and different cytokines in 46 fibrotic (F-ILD) and 17 non-fibrotic (NF-ILD) patients by ELISA and using peripheral blood mononuclear cells from in vitro stimulation in the presence of lysozyme or secretory leukocyte protease inhibitor (SLPI) from 10 healthy donors. We observed that bronchoalveolar lavage (BAL) levels of AMPs were decreased in F-ILD patients (lysozyme: p < 0.001; SLPI: p < 0.001; LL-37: p < 0.001; lactoferrin: p = 0.47) and were negatively correlated with levels of TGF-ß (lysozyme: p = 0.02; SLPI: p < 0.001) and IL-17 (lysozyme: p < 0.001; SLPI: p < 0.001). We observed that lysozyme increased the percentage of CD86+ macrophages (p < 0.001) and the production of TNF-α (p < 0.001). We showed that lysozyme and SLPI were associated with clinical parameters (lysozyme: p < 0.001; SLPI: p < 0.001) and disease progression (lysozyme: p < 0.001; SLPI: p = 0.01). These results suggest that AMPs may play an important role in the anti-fibrotic response, regulating the effect of pro-fibrotic cytokines. In addition, levels of lysozyme in BAL may be a potential biomarker to predict the progression in F-ILD patients.


Bronchoalveolar Lavage Fluid , Lung Diseases, Interstitial , Muramidase , Secretory Leukocyte Peptidase Inhibitor , Humans , Muramidase/metabolism , Male , Female , Middle Aged , Secretory Leukocyte Peptidase Inhibitor/metabolism , Bronchoalveolar Lavage Fluid/chemistry , Lung Diseases, Interstitial/metabolism , Lung Diseases, Interstitial/pathology , Aged , Cytokines/metabolism , Adult , Biomarkers , Bronchoalveolar Lavage , Leukocytes, Mononuclear/metabolism
6.
Sci Rep ; 14(1): 9134, 2024 04 21.
Article En | MEDLINE | ID: mdl-38644380

Prolonged exposure to iron powder and other mineral dusts can threaten the health of individuals, especially those with COPD. The goal of this study was to determine how environmental exposure to metal dust from two different mining centers in Brazil affects lung mechanics, inflammation, remodeling and oxidative stress responses in healthy and elastase-exposed mice. This study divided 72 male C57Bl/6 mice into two groups, the summer group and the winter group. These groups were further divided into six groups: control, nonexposed (SAL); nonexposed, given elastase (ELA); exposed to metal powder at a mining company (SAL-L1 and ELA-L1); and exposed to a location three miles away from the mining company (SAL-L2 and ELA-L2) for four weeks. On the 29th day of the protocol, the researchers assessed lung mechanics, bronchoalveolar lavage fluid (BALF), inflammation, remodeling, oxidative stress, macrophage iron and alveolar wall alterations (mean linear intercept-Lm). The Lm was increased in the ELA, ELA-L1 and ELA-L2 groups compared to the SAL group (p < 0.05). There was an increase in the total number of cells and macrophages in the ELA-L1 and ELA-L2 groups compared to the other groups (p < 0.05). Compared to the ELA and SAL groups, the exposed groups (ELA-L1, ELA-L2, SAL-L1, and SAL-L2) exhibited increased expression of IL-1ß, IL-6, IL-10, IL-17, TNF-α, neutrophil elastase, TIMP-1, MMP-9, MMP-12, TGF-ß, collagen fibers, MUC5AC, iNOS, Gp91phox, NFkB and iron positive macrophages (p < 0.05). Although we did not find differences in lung mechanics across all groups, there were low to moderate correlations between inflammation remodeling, oxidative stress and NFkB with elastance, resistance of lung tissue and iron positive macrophages (p < 0.05). Environmental exposure to iron, confirmed by evaluation of iron in alveolar macrophages and in air, exacerbated inflammation, initiated remodeling, and induced oxidative stress responses in exposed mice with and without emphysema. Activation of the iNOS, Gp91phox and NFkB pathways play a role in these changes.


Environmental Exposure , Iron , Pancreatic Elastase , Animals , Male , Mice , Bronchoalveolar Lavage Fluid/chemistry , Environmental Exposure/adverse effects , Inflammation/metabolism , Inflammation/chemically induced , Iron/toxicity , Lung/drug effects , Lung/metabolism , Lung/pathology , Mice, Inbred C57BL , Oxidative Stress/drug effects , Pancreatic Elastase/metabolism , Pancreatic Elastase/pharmacology , Powders/toxicity
7.
Crit Care ; 28(1): 134, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38654351

BACKGROUND: In this study, the concentrations of inflammatory cytokines were measured in the bronchial epithelial lining fluid (ELF) and plasma in patients with acute hypoxemic respiratory failure (AHRF) secondary to severe coronavirus disease 2019 (COVID-19). METHODS: We comprehensively analyzed the concentrations of 25 cytokines in the ELF and plasma of 27 COVID-19 AHRF patients. ELF was collected using the bronchial microsampling method through an endotracheal tube just after patients were intubated for mechanical ventilation. RESULTS: Compared with those in healthy volunteers, the concentrations of interleukin (IL)-6 (median 27.6 pmol/L), IL-8 (1045.1 pmol/L), IL-17A (0.8 pmol/L), IL-25 (1.5 pmol/L), and IL-31 (42.3 pmol/L) were significantly greater in the ELF of COVID-19 patients than in that of volunteers. The concentrations of MCP-1 and MIP-1ß were significantly greater in the plasma of COVID-19 patients than in that of volunteers. The ELF/plasma ratio of IL-8 was the highest among the 25 cytokines, with a median of 737, and the ELF/plasma ratio of IL-6 (median: 218), IL-1ß (202), IL-31 (169), MCP-1 (81), MIP-1ß (55), and TNF-α (47) were lower. CONCLUSIONS: The ELF concentrations of IL-6, IL-8, IL-17A, IL-25, and IL-31 were significantly increased in COVID-19 patients. Although high levels of MIP-1 and MIP-1ß were also detected in the blood samples collected simultaneously with the ELF samples, the results indicated that lung inflammation was highly compartmentalized. Our study demonstrated that a comprehensive analysis of cytokines in the ELF is a feasible approach for understanding lung inflammation and systemic interactions in patients with severe pneumonia.


COVID-19 , Cytokines , Respiratory Insufficiency , Humans , COVID-19/blood , COVID-19/complications , COVID-19/immunology , Cytokines/blood , Cytokines/analysis , Male , Female , Middle Aged , Aged , Respiratory Insufficiency/therapy , Respiratory Insufficiency/blood , Adult , Bronchi , Bronchoalveolar Lavage Fluid/chemistry
8.
Ital J Pediatr ; 50(1): 90, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38685084

BACKGROUND: Persistent airway inflammation is a central feature of bronchiectasis. Arachidonate 15-lipoxygenase (ALOX-15) controls production of endogenous lipid mediators, including lipoxins that regulate airway inflammation. Mutations at various positions in ALOX-15 gene can influence airway disease development. We investigated association between ALOX-15,c.-292 C > T gene polymorphism and bronchiectasis unrelated to cystic fibrosis in Egyptian children. Also, lipoxin A4 (LXA4) level in bronchoalveolar lavage (BAL) was studied in relation to polymorphism genotypes and disease phenotypes determined by clinical, pulmonary functions, and radiological severity parameters. METHODS: This was an exploratory study that included 60 participants. Thirty children with non-cystic fibrosis bronchiectasis (NCFB) were compared with 30 age and sex-matched controls. ALOX-15,c.-292 C > T polymorphism was genotyped using TaqMan-based Real-time PCR. LXA4 was measured in BAL using ELISA method. RESULTS: There was no significant difference between patients and controls regarding ALOX-15,c.-292 C > T polymorphism genotypes and alleles (OR = 1.75; 95% CI (0.53-5.7), P = 0.35) (OR = 1; 95% CI (0.48-2), p = 1). BAL LXA4 level was significantly lower in patients, median (IQR) of 576.9 (147.6-1510) ng/ml compared to controls, median (IQR) of 1675 (536.8-2542) (p = 0.002). Patients with severe bronchiectasis had a significantly lower LXA4 level (p < 0.001). There were significant correlations with exacerbations frequency (r=-0.54, p = 0.002) and FEV1% predicted (r = 0.64, p = 0.001). Heterozygous CT genotype carriers showed higher LXA4 levels compared to other genotypes(p = 0.005). CONCLUSIONS: Low airway LXA4 in children with NCFB is associated with severe disease phenotype and lung function deterioration. CT genotype of ALOX-15,c.-292 C > T polymorphism might be a protective genetic factor against bronchiectasis development and/or progression due to enhanced LXA4 production.


Arachidonate 15-Lipoxygenase , Bronchiectasis , Lipoxins , Phenotype , Adolescent , Child , Child, Preschool , Female , Humans , Male , Arachidonate 15-Lipoxygenase/genetics , Bronchiectasis/genetics , Bronchoalveolar Lavage Fluid/chemistry , Case-Control Studies , Egypt , Genetic Predisposition to Disease , Genotype , Pilot Projects , Polymorphism, Genetic
9.
Environ Toxicol Pharmacol ; 107: 104413, 2024 Apr.
Article En | MEDLINE | ID: mdl-38485102

Carbon nanotubes (CNTs) vary in physicochemical properties which makes risk assessment challenging. Mice were pulmonary exposed to 26 well-characterized CNTs using the same experimental design and followed for one day, 28 days or 3 months. This resulted in a unique dataset, which was used to identify physicochemical predictors of pulmonary inflammation and systemic acute phase response. MWCNT diameter and SWCNT specific surface area were predictive of lower and higher neutrophil influx, respectively. Manganese and iron were shown to be predictive of higher neutrophil influx at day 1 post-exposure, whereas nickel content interestingly was predictive of lower neutrophil influx at all three time points and of lowered acute phase response at day 1 and 3 months post-exposure. It was not possible to separate effects of properties such as specific surface area and length in the multiple regression analyses due to co-variation.


Nanotubes, Carbon , Pneumonia , Mice , Animals , Nanotubes, Carbon/toxicity , Nanotubes, Carbon/chemistry , Acute-Phase Reaction , Bronchoalveolar Lavage Fluid/chemistry , Lung , Pneumonia/chemically induced , Mice, Inbred C57BL
10.
J Antimicrob Chemother ; 79(5): 1169-1175, 2024 May 02.
Article En | MEDLINE | ID: mdl-38546795

BACKGROUND: Invasive aspergillosis is a severe fungal infection that affects multiple organ systems including the CNS and the lungs. Isavuconazole, a novel triazole antifungal agent, has demonstrated promising activity against Aspergillus spp. However, data on the penetration of isavuconazole into the CNS and ELF and intracellular accumulation remain limited. MATERIALS AND METHODS: We conducted a prospective single-centre pharmacokinetic (PK) study in 12 healthy volunteers. Subjects received seven doses of 200 mg isavuconazole to achieve an assumed steady-state. After the first and final infusion, plasma sampling was conducted over 8 and 12 h, respectively. All subjects underwent one lumbar puncture and bronchoalveolar lavage, at either 2, 6 or 12 h post-infusion of the final dose. PBMCs were collected in six subjects from blood to determine intracellular isavuconazole concentrations at 6, 8 or 12 h. The AUC/MIC was calculated for an MIC value of 1 mg/L, which marks the EUCAST susceptibility breakpoint for Aspergillus fumigatus and Aspergillus flavus. RESULTS: C max and AUC0-24h of isavuconazole in plasma under assumed steady-state conditions were 6.57 ±â€Š1.68 mg/L (mean ±â€ŠSD) and 106 ±â€Š32.1 h·mg/L, respectively. The average concentrations measured in CSF, ELF and in PBMCs were 0.07 ±â€Š0.03, 0.94 ±â€Š0.46 and 27.1 ±â€Š17.8 mg/L, respectively. The AUC/MIC in plasma, CSF, ELF and in PBMCs under steady-state conditions were 106 ±â€Š32.1, 1.68 ±â€Š0.72, 22.6 ±â€Š11.0 and 650 ±â€Š426 mg·h/L, respectively. CONCLUSION: Isavuconazole demonstrated moderate penetration into ELF, low penetrability into CSF and high accumulation in PBMCs. Current dosing regimens resulted in sufficient plasma exposure in all subjects to treat isolates with MICs ≤ 1 mg/L.


Antifungal Agents , Healthy Volunteers , Nitriles , Pyridines , Triazoles , Humans , Triazoles/pharmacokinetics , Triazoles/administration & dosage , Pyridines/pharmacokinetics , Pyridines/administration & dosage , Antifungal Agents/pharmacokinetics , Antifungal Agents/administration & dosage , Male , Adult , Nitriles/pharmacokinetics , Nitriles/administration & dosage , Prospective Studies , Female , Infusions, Intravenous , Young Adult , Microbial Sensitivity Tests , Middle Aged , Aspergillus fumigatus/drug effects , Aspergillus flavus/drug effects , Bronchoalveolar Lavage Fluid/chemistry , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/drug effects
11.
Proteomics Clin Appl ; 18(2): e2300053, 2024 Mar.
Article En | MEDLINE | ID: mdl-38295123

PURPOSE: Advances in mass spectrometry-based quantitative proteomic analysis have successfully demonstrated the in-depth detection of protein biomarkers in bronchoalveolar lavage fluid (BALF) from patients with lung cancers. Recently, ion mobility technology was incorporated into the mass spectrometers escalating the sensitivity and throughput. Utilizing these advantages, herein, we employed the parallel accumulation-serial fragmentation (PASEF) implanted in a timsTOF Pro mass spectrometer to examine the alteration of BALF proteomes in patients with nonsmall cell lung cancers (NSCLCs). EXPERIMENTAL DESIGN: BALF proteins were processed from patients with NSCLC and analyzed in a timsTOF Pro mass spectrometer with the PASEF method using a peptide input of 100 ng. Label-free mass spectrometry data were analyzed in the FragPipe platform. RESULTS: We quantitated over 1400 proteins from a single injection of 100 ng of peptides per sample with a median of ∼2000 proteins. We were able to find a few potential biomarker proteins upregulated in NSCLC. CONCLUSIONS AND CLINICAL RELEVANCE: The alterations of the BALF proteome landscape vary among patients with NSCLC as previously observed in patients with small-cell lung cancers. The PASEF method has significantly enhanced the sensitivity and throughput, demonstrating its effectiveness in clinical research and application.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Bronchoalveolar Lavage Fluid/chemistry , Lung Neoplasms/metabolism , Proteomics/methods , Mass Spectrometry , Peptides , Proteome
12.
Cell Biochem Funct ; 42(1): e3899, 2024 Jan.
Article En | MEDLINE | ID: mdl-38088534

Asthma is a common respiratory disease associated with airway inflammation. Nerolidol is an acyclic sesquiterpenoid with anti-inflammatory properties. BALB/C mice were sensitized with ovalbumin (OVA) to induce asthma symptoms and given different doses of Nerolidol. We found that Nerolidol reduced OVA-induced inflammatory cell infiltration, the number of goblet cells and collagen deposition in lung tissue. Nerolidol reduced the OVA-specific IgE levels in serum and alveolar lavage fluid in an asthma model. Immunohistochemical staining of α-SMA (the marker of airway smooth muscle) showed that Nerolidol caused bronchial basement membrane thinning in asthmatic mice. The hyperplasia of airway smooth muscle cells (ASMCs) is an important feature of airway remodeling in asthma. ASMCs were treated with 10 ng/mL TGF-ß to simulate the pathological environment of asthma in vitro and then treated with different doses of Nerolidol. Nerolidol inhibited the activity of TGF-ß/Smad signaling pathway both in the lung tissue of OVA-induced mouse and TGF-ß-stimulated ASMCs. 16s rRNA sequencing was performed on feces of normal mice, the changes of intestinal flora in OVA-induced asthmatic mice and Nerolidol-treated asthmatic mice were studied. The results showed that Nerolidol reversed the reduced gut microbial alpha diversity in asthmatic mice. Nerolidol changed the relative abundance of gut bacteria at different taxonomic levels. At the phylum level, the dominant bacteria were Bacteroidota, Firmicutes, and Proteobacteria. At the genus level, the dominant bacteria were Lactobacillus, Muribaculaceae, Bacteroides, and Lachnospiraceae. We conclude that Nerolidol attenuates OVA-induced airway inflammation and alters gut microbes in mice with asthma via TGF-ß/Smad signaling.


Asthma , Gastrointestinal Microbiome , Sesquiterpenes , Animals , Mice , Ovalbumin/adverse effects , Ovalbumin/metabolism , Airway Remodeling , RNA, Ribosomal, 16S/metabolism , Mice, Inbred BALB C , Asthma/chemically induced , Asthma/drug therapy , Asthma/metabolism , Lung/metabolism , Lung/pathology , Sesquiterpenes/pharmacology , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Bronchoalveolar Lavage Fluid/chemistry , Transforming Growth Factor beta/metabolism , Disease Models, Animal
13.
J Pharmacol Exp Ther ; 388(2): 568-575, 2024 01 17.
Article En | MEDLINE | ID: mdl-38050084

Burn injuries including those caused by chemicals can result in systemic effects and acute lung injury (ALI). Cutaneous exposure to Lewisite, a warfare and chemical burn agent, also causes ALI. To overcome the limitations in conducting direct research on Lewisite-induced ALI in a laboratory setting, an animal model was developed using phenylarsine oxide (PAO) as a surrogate for Lewisite. Due to lack of a reliable animal model mimicking the effects of such exposures, development of effective therapies to treat such injuries is challenging. We demonstrated that a single cutaneous exposure to PAO resulted in disruption of the alveolar-capillary barrier as evidenced by elevated protein levels in the bronchoalveolar lavage fluid (BALF). BALF supernatant of PAO-exposed animals had increased levels of high mobility group box 1, a damage associated molecular pattern molecule. Arterial blood-gas measurements showed decreased pH, increased PaCO2, and decreased partial pressure of arterial O2, indicative of respiratory acidosis, hypercapnia, and hypoxemia. Increased protein levels of interleukin (IL)-6, CXCL-1, CXCL-2, CXCL-5, granulocyte-macrophage colony-stimulating factor, CXCL-10, leukemia inhibitory factor, leptin, IL-18, CCL-2, CCL-3, and CCL-7 were observed in the lung of PAO-exposed mice. Further, vascular endothelial growth factor levels were reduced in the lung. Pulmonary function evaluated using a flexiVent showed a downward shift in the pressure-volume loop, decreases in static compliance and inspiratory capacity, increases in respiratory elastance and tissue elastance. These changes are consistent with an ALI phenotype. These results demonstrate that cutaneous PAO exposure leads to ALI and that the model can be used as an effective surrogate to investigate vesicant-induced ALI. SIGNIFICANCE STATEMENT: This study presents a robust model for studying ALI resulting from cutaneous exposure to PAO, a surrogate for the toxic vesicating agent Lewisite. The findings in this study mimic the effects of cutaneous Lewisite exposure, providing a reliable model for investigating mechanisms underlying toxicity. The model can also be used to develop medical countermeasures to mitigate ALI associated with cutaneous Lewisite exposure.


Acute Lung Injury , Arsenicals , Irritants , Mice , Animals , Irritants/adverse effects , Disease Models, Animal , Vascular Endothelial Growth Factor A/metabolism , Lung/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Bronchoalveolar Lavage Fluid/chemistry , Interleukin-6/metabolism
14.
Free Radic Biol Med ; 212: 207-219, 2024 02 20.
Article En | MEDLINE | ID: mdl-38147892

Asthma is a chronic obstructive airway condition and one of the most common non-communicable illnesses worldwide. Tectorigenin (Tec) is an isoflavonoid found in plants that possesses significant antioxidative and anti-inflammatory abilities. Nevertheless, the antioxidative properties of Tec have not yet been documented in allergic asthma. In this study, we created an asthmatic BALB/c mouse model induced by ovalbumin (OVA) and used it to assess the efficacy of Tec as a possible therapy agent. Tec decreased the serum OVA-specific immunoglobulin (Ig) E and IgG1 secretion levels. The total number of cells and the distribution of inflammatory cells decreased significantly in bronchoalveolar lavage fluid (BALF), with weakened inflammatory reaction in pulmonary tissues. Additionally, Tec regulated the T helper 1(Th1)/Th2 balance by increasing the expression of Th1- related factors (interleukin (IL)-12 and T-bet) and decreasing the expression of Th2-related factors (IL-4, IL-5, IL-13, and GATA binding protein 3. In addition, the pro-inflammatory cytokines such as IL-6, tumor necrosis factor-alpha, and IL-1ß were also inhibited by Tec. Tec also dramatically increased antioxidant (catalase and superoxide dismutase) concentrations while lowering the intensity of the indicators of oxidative stress such as reactive oxygen species and malondialdehyde in BALF. Finally, Tec effectively activated the Keap1/Nrf2/HO-1 signaling pathway and prevented the epithelial-mesenchymal transition. The results of the current study show that Tec may be useful in relieving the inflammatory and oxidative stress responses associated with asthma.


Asthma , Isoflavones , NF-E2-Related Factor 2 , Animals , Mice , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Asthma/drug therapy , Asthma/metabolism , Lung/metabolism , Oxidative Stress , Immunoglobulin E , Bronchoalveolar Lavage Fluid/chemistry , Cytokines/metabolism , Signal Transduction , Mice, Inbred BALB C , Ovalbumin , Disease Models, Animal
15.
Sci Rep ; 13(1): 21778, 2023 12 08.
Article En | MEDLINE | ID: mdl-38066223

The lipidome of equine BALF cells has not been described. The objectives of this prospective repeated-measures study were to explore the BALF cells' lipidome in horses and to identify lipids associated with progression or resolution of airway inflammation. BALF cells from 22 horses exposed to two bedding materials (Peat 1-Wood shavings [WS]-Peat 2) were studied by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The effects of bedding on lipid class and species compositions were tested with rmANOVA. Correlations between lipids and cell counts were examined. The BALF cells' lipidome showed bedding-related differences for molar percentage (mol%) of 60 species. Whole phosphatidylcholine (PC) class and its species PC 32:0 (main molecular species 16:0_16:0) had higher mol% after Peat 2 compared with WS. Phosphatidylinositol 38:4 (main molecular species 18:0_20:4) was higher after WS compared with both peat periods. BALF cell count correlated positively with mol% of the lipid classes phosphatidylserine, sphingomyelin, ceramide, hexosylceramide, and triacylglycerol but negatively with PC. BALF cell count correlated positively with phosphatidylinositol 38:4 mol%. In conclusion, equine BALF cells' lipid profiles explored with MS-based lipidomics indicated subclinical inflammatory changes after WS. Inflammatory reactions in the cellular lipid species composition were detected although cytological responses indicating inflammation were weak.


Inflammation , Tandem Mass Spectrometry , Animals , Horses , Bronchoalveolar Lavage Fluid/chemistry , Chromatography, Liquid , Prospective Studies , Inflammation/veterinary , Soil , Phosphatidylinositols , Bedding and Linens , Bronchoalveolar Lavage
16.
BMC Pulm Med ; 23(1): 423, 2023 Nov 03.
Article En | MEDLINE | ID: mdl-37924084

BACKGROUND: Surfactant phospholipid (PL) composition plays an important role in lung diseases. We compared the PL composition of non-invasively collected exhaled breath particles (PEx) with bronchoalveolar lavage (BAL) and induced sputum (ISP) at baseline and following endotoxin (LPS) challenges. METHODS: PEx and BAL were collected from ten healthy nonsmoking participants before and after segmental LPS challenge. Four weeks later, PEx and ISP were sampled in the week before and after a whole lung LPS inhalation challenge. PL composition was analysed using mass spectrometry. RESULTS: The overall PL composition of BAL, ISP and PEx was similar, with PC(32:0) and PC(34:1) representing the largest fractions in all three sample types (baseline PC(32:0) geometric mean mol%: 52.1, 56.9, and 51.7, PC(34:1) mol%: 11.7, 11.9 and 11.4, respectively). Despite this similarity, PEx PL composition was more closely related to BAL than to ISP. For most lipids comparable inter-individual differences in BAL, ISP, and PEx were found. PL composition of PEx was repeatable. The most pronounced increase following segmental LPS challenge was detected for SM(d34:1) in BAL (0.24 to 0.52 mol%) and following inhalation LPS challenge in ISP (0.45 to 0.68 mol%). An increase of SM(d34:1) following segmental LPS challenge was also detectable in PEx (0.099 to 0.103 mol%). The inhalation challenge did not change PL composition of PEx. CONCLUSION: Our data supports the peripheral origin of PEx. The lack of PL changes in PEx after inhalation challenge might to be due to the overall weaker response of inhaled LPS which primarily affects the larger airways. Compared with BAL, which always contains lining fluid from both peripheral lung and central airways, PEx analysis might add value as a selective and non-invasive method to investigate peripheral airway PL composition. TRIAL REGISTRATION: NCT03044327, first posted 07/02/2017.


Lipopolysaccharides , Pulmonary Surfactants , Humans , Bronchoalveolar Lavage , Bronchoalveolar Lavage Fluid/chemistry , Exhalation/physiology , Lipopolysaccharides/analysis , Lung/physiology
17.
Food Funct ; 14(21): 9841-9856, 2023 Oct 30.
Article En | MEDLINE | ID: mdl-37850547

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide and characterized by emphysema, small airway remodeling and mucus hypersecretion. Citrus peels have been widely used as food spices and in traditional Chinese medicine for chronic lung disease. Given that citrus peels are known for containing antioxidants and anti-inflammatory compounds, we hypothesize that citrus peel intake can suppress oxidative stress and inflammatory response to air pollution exposure, thereby alleviating COPD-like pathologies. This study aimed to investigate the efficacy of citrus peel extract, namely Guang Chenpi (GC), in preventing the development of COPD induced by diesel exhaust particles (DEPs) and its potential mechanism. DEP-induced COPD-like lung pathologies, inflammatory responses and oxidative stress with or without GC treatment were examined in vivo and in vitro. Our in vivo study showed that GC was effective in decreasing inflammatory cell counts and inflammatory mediator (IL-17A and TNF-α) concentrations in bronchoalveolar lavage fluid (BALF). Pretreatment with GC extract also significantly decreased oxidative stress in the serum and lung tissue of DEP-induced COPD rats. Furthermore, GC pretreatment effectively reduced goblet cell hyperplasia (PAS positive cells) and fibrosis of the small airways, decreased macrophage infiltration as well as carbon loading in the peripheral lungs, and facilitated the resolution of emphysema and small airway remodeling in DEP-induced COPD rats. An in vitro free radical scavenging assay revealed robust antioxidant potential of GC in scavenging DPPH free radicals. Moreover, GC demonstrated potent capacities in reducing ROS production and enhancing SOD activity in BEAS-2B cells stimulated by DEPs. GC treatment significantly attenuated the increased level of IL-8 and MUC5AC from DEP-treated BEAS-2B cells. Mechanistically, GC treatment upregulated the protein level of Nrf-2 and could function via MAPK/NF-κB signaling pathways by suppressing the phosphorylation of p38, JNK and p65. Citrus peel extract is effective in decreasing oxidative stress and inflammatory responses of the peripheral lungs to DEP exposure. These protective effects further contributed to the resolution of COPD-like pathologies.


Citrus , Emphysema , Pulmonary Disease, Chronic Obstructive , Rats , Animals , Vehicle Emissions/toxicity , Citrus/metabolism , Airway Remodeling , Pulmonary Disease, Chronic Obstructive/drug therapy , Lung , Oxidative Stress , Antioxidants/pharmacology , Antioxidants/metabolism , Bronchoalveolar Lavage Fluid/chemistry , Emphysema/metabolism
18.
Glycobiology ; 33(12): 1128-1138, 2023 Dec 30.
Article En | MEDLINE | ID: mdl-37656214

Chronic obstructive pulmonary disease (COPD) kills millions of people annually and patients suffering from exacerbations of this disorder display high morbidity and mortality. The clinical course of COPD is associated with dysbiosis and infections, but the underlying mechanisms are poorly understood. Glycosylation of proteins play roles in regulating interactions between microbes and immune cells, and knowledge on airway glycans therefore contribute to the understanding of infections. Furthermore, glycans have biomarker potential for identifying smokers with enhanced risk for developing COPD as well as COPD subgroups. Here, we characterized the N-glycosylation in the lower airways of healthy never-smokers (HNS, n = 5) and long-term smokers (LTS) with (LTS+, n = 4) and without COPD (LTS-, n = 8). Using mass spectrometry, we identified 57 highly confident N-glycan structures whereof 38 oligomannose, complex, and paucimannose type glycans were common to BAL samples from HNS, LTS- and LTS+ groups. Hybrid type N-glycans were identified only in the LTS+ group. Qualitatively and quantitatively, HNS had lower inter-individual variation between samples compared to LTS- or LTS+. Cluster analysis of BAL N-glycosylation distinguished LTS from HNS. Correlation analysis with clinical parameters revealed that complex N-glycans were associated with health and absence of smoking whereas oligomannose N-glycans were associated with smoking and disease. The N-glycan profile from monocyte-derived macrophages differed from the BAL N-glycan profiles. In conclusion, long-term smokers display substantial alterations of N-glycosylation in the bronchoalveolar space, and the hybrid N-glycans identified only in long-term smokers with COPD deserve to be further studied as potential biomarkers.


Pulmonary Disease, Chronic Obstructive , Smokers , Humans , Glycosylation , Pulmonary Disease, Chronic Obstructive/metabolism , Smoking , Biomarkers/metabolism , Polysaccharides , Bronchoalveolar Lavage Fluid/chemistry
19.
Int J Mol Sci ; 24(13)2023 Jun 29.
Article En | MEDLINE | ID: mdl-37446067

Nanoparticles are extensively used in industrial products or as food additives. However, despite their contribution to improving our quality of life, concerns have been raised regarding their potential impact on occupational and public health. To speed up research assessing nanoparticle-related hazards, this study was undertaken to identify early markers of harmful effects on the lungs. Female Sprague Dawley rats were either exposed to crystalline silica DQ-12 with instillation, or to titanium dioxide P25, carbon black Printex-90, or multi-walled carbon nanotube Mitsui-7 with nose-only inhalation. Tissues were collected at three post-exposure time points to assess short- and long-term effects. All particles induced lung inflammation. Histopathological and biochemical analyses revealed phospholipid accumulation, lipoproteinosis, and interstitial thickening with collagen deposition after exposure to DQ-12. Exposure to the highest dose of Printex-90 and Mitsui-7, but not P25, induced some phospholipid accumulation. Comparable histopathological changes were observed following exposure to P25, Printex-90, and Mitsui-7. Comparison of overall gene expression profiles identified 15 potential early markers of adverse lung outcomes induced by spherical particles. With Mitsui-7, a distinct gene expression signature was observed, suggesting that carbon nanotubes trigger different toxicity mechanisms to spherical particles.


Nanotubes, Carbon , Rats , Female , Animals , Nanotubes, Carbon/toxicity , Quality of Life , Rats, Sprague-Dawley , Lung/pathology , Silicon Dioxide/pharmacology , Inhalation Exposure/adverse effects , Bronchoalveolar Lavage Fluid/chemistry
20.
Sci Rep ; 13(1): 9821, 2023 06 17.
Article En | MEDLINE | ID: mdl-37330591

Equine asthma (EA) is an inflammatory disease of the lower airways driven by mediators released from cells. Extracellular vesicles (EVs) are vehicles for lipid mediators, which possess either pro-inflammatory or dual anti-inflammatory and pro-resolving functions. In this study, we investigated how the respiratory fatty acid (FA) profile reflects airway inflammatory status. The FA composition of bronchoalveolar lavage fluid (BALF), BALF supernatant, and bronchoalveolar EVs of healthy horses (n = 15) and horses with mild/moderate EA (n = 10) or severe EA (SEA, n = 5) was determined with gas chromatography and mass spectrometry. The FA profiles distinguished samples with different diagnoses in all sample types, yet they were insufficient to predict the health status of uncategorized samples. Different individual FAs were responsible for the discrimination of the diagnoses in different sample types. Particularly, in the EVs of SEA horses the proportions of palmitic acid (16:0) decreased and those of eicosapentaenoic acid (20:5n-3) increased, and all sample types of asthmatic horses had elevated dihomo-γ-linolenic acid (20:3n-6) proportions. The results suggest simultaneous pro-inflammatory and resolving actions of FAs and a potential role for EVs as vehicles for lipid mediators in asthma pathogenesis. EV lipid manifestations of EA can offer translational targets to study asthma pathophysiology and treatment options.


Asthma , Extracellular Vesicles , Horse Diseases , Animals , Horses , Bronchoalveolar Lavage Fluid/chemistry , Fatty Acids , Gas Chromatography-Mass Spectrometry , Asthma/diagnosis , Asthma/veterinary , Horse Diseases/diagnosis , Bronchoalveolar Lavage
...